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Localized Orbitals and the Fermi Hole 
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The relationship between localized orbitals and the Fermi hole is demon- 
strated with contour maps of the Fermi hole in the water molecule. These 
contour maps indicate the presence of regions in which the Fermi hole is 
relatively stable, regions in which the~hape of the Fermi hole changes rapidly, 
and regions in which the Fermi hole follows the probe electron smoothly. If 
a single orbital dominates any region of space, the Fermi hole resembles that 
orbital for any position of the probe electron in the dominated region. 
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1. Introduction 

The observable properties of any wavefunction composed of a single Slater 
determinant are invariant to a unitary transformation of the orbitals occupied 
in the wavefunction [l]. These invariant properties include the total electronic 
energy and the first and second order reduced density matrices [2-4], as well as 
others. Because of this invariance, any of these properties may be described 
equally well using either canonical self-consistent field (SCF) orbitals, or the 
corresponding localized SCF orbitals [5-7]. 

This paper considers the relationships between localized molecular orbitals and 
the Fermi hole [8-16]. The relationship between the Fermi hole, the localizability 
of electrons, and the theory of loges [17, 18] have been examined previously 
by Bader and co-workers [19-22]. In this paper, the relationship between the 
Fermi hole and localized molecular orbitals is demonstrated in a sequence of 
contour maps of the Fermi hole in the water molecule. Being invariant to a 
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unitary transformation of the occupied orbitals, the Fermi hole may be deter- 
mined directly in terms of canonical SCF molecular orbitals. As a result, it is 
possible to obtain information about the localizability of the orbitals in an SCF 
wavefunction without transforming canonical orbitals to localized orbitals, 
without choosing a criterion of localization, and without partitioning a molecule 
into regions. 

The'characterist ics of localized orbitals are reviewed briefly in the following 
section of this paper. The third section provides a definition of the Fermi hole 
as used in this work. The contour maps of the Fermi hole in the water molecule 
are presented in the fourth section. This is followed by a discussion of the 
relationship between the  Fermi hole and localized orbitals. 

2. Localized Orbitais 

An N electron Slater determinant  is an anti-symmetric product of N spin- 
orbitals, 

qb(l, 2 , . . .  N) = A[r162 �9 �9 �9 CN(N)]. (1) 

The operator  A is the N electron anti-symmetrizer, and the space and spin 
co-ordinates of each electron are specified by the corresponding electronic index. 
Each of the spin-orbitals in this product  is usually formed as the product of a 
spatial function and a spin function (a or fl), 

/ fi  (~1)0~ 1 ; l<--i<--n 
r = [fi(F1)/31; n<i<_N 

where n is the number  of electrons with a spin. In the case of a closed shell 
Slater determinant,  we have n = N/2 and f~(F)= fi+,(r).  

The SCF orbitals for the single determinantal  wavefunctions qb are determined 
by the spatial functions fi (r) which minimize the energy of �9 subject to constraints 
of orbital orthonormality.  These functions are usually determined as the eigen- 
functions of appropriate Fock operators [23-26]. The resulting canonical SCF 
orbitals may be widely distributed over distant parts of a molecule. 

Alternatives to the canonical SCF orbitals may be determined by taking advan- 
tage of the invariance of a Slater determinant to a unitary transformation of the 
occupied orbitals. In particular, it is possible to define localized orbitals which 
are related to the canonical SCF orbitals by a unitary transformation, and which 
satisfy some criteria of localization. Several criteria for determining localized 
orbitals have been proposed. These include maximization of the sum of orbital 
self-repulsion integrals [5, 7] 

& = ~ <ii]l/n21ii>, (3) 
i=1 
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minimization of the sum [27] 

$2 = ~ (iilr1221ii), (4) 
i=1 

and maximization of the sum [28] 

$3 = Y. (ii]8(r12)lii>. (5) 
,=1 

The localized orbitals determined by each of these criteria generally differ from 
those determined by the other criteria, but the differences are usually very minor 
[29, 30]. It is usually easy to interpret each of the resulting localized orbitals as 
a core orbital, lone pair (atomic hybrid) orbital, or chemical bond [31-34]. 
Consequently, these orbitals provide an appealing basis for the description of 
molecular structure and bonding. In addition, there has been much interest in 
the use of localized orbitals for the description of electron correlation in molecules 
[35-42]. 

In spite of the useful features characteristic of localized orbitals, it is possible 
to regard them as arbitrary and artificial. Each of the types of localized orbitals 
considered above depends upon a criterion of localization which is necessarily 
dependent upon unitary transformations of the occupied SCF orbitals. Con- 
sequently, these criteria cannot correspond to observable properties of the N 
electron SCF wavefunction. These artificial criteria are then imposed upon the 
SCF orbitals, which must always comply to some degree. 

The curious fact is that the various criteria for determining localized orbitals all 
tend to yield very similar results. If there were no sound physical basis for the 
concept of localized orbitals, then the orbitals determined by each criterion 
should frequently be grossly inconsistent with those determined by the other 
criteria. The weakness of the dependence of localized orbitals on the criterion 
of localization suggests the existence of a common element which is independent 
of these criteria. 

3. Density Functions and the Fermi Hole 

The first order reduced density matrix for the wavefunction in Eq. (1) is given 
by [2-4]: 

y(1; 2)= p.(rl; r2)~la* +p~(rl; r2)fllfl~ (6) 

where 

p.(rl; r2) = f fi(rl)f* (r2) (7a) 
i=l  

is the spatial density of electrons with a spin, and 

N 
p~(rl;r2) = ~ fi(rl)f*(r2) (7b) 

i ~ n + l  
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is the corresponding density for electrons with/3 spin. The total spatial electronic 
density is given by 

p (rl; r2) = p~ (rl; r2) + O~ (rl; rz). (8) 

In the special case of a closed shell electronic configuration, the o~ and/3 density 
matrices each equal half of the total density. 

The Fermi hole may be defined as 

a(rl ;  r2) = p (rl) - 2p2(rl, r2)/O (r2) (9) 

where p(r)= p(r; r). This definition differs from more conventional definitions 
by a factor of - 1  [10, 11, 14, 15]. The definition adopted here yields a positive 
Fermi hole, facilitating comparison with orbital density functions./92 is the two 
electron density function given by [3, 13, 14] 

P2(rl, r2) = p=, (rl, r2) + P,~t~ (rl, &) + Pz~ (rl, r2) + pzz (rl, rz). (10) 

In the case of a single Slater determinant, we have 

p ~  (rl, r2) = [p~ (rl)p~ (r2) - p~ (rt, r2)p~ (r2, rl)]/2, (11a) 

p~z (rl, r2) = p~ (rt)pt~ (r2)/2, (1 lb) 

and pz~ and pzz are given by analogous expressions. In the case of a closed shell 
electronic configuration, 

pz(rl, r2) = [p (rl)p (r2) - p (rl; rz)p (r2; rl) /2]/2.  (12) 

Consequently, the Fermi hole for a closed shell electronic configuration is given 
by 

A(rl; r2) = p (rl; ra)p (r2; rl)/2O (r2). (13) 

In terms of individual orbitals, the closed shell Fermi hole is given by 

A ( r l ,  r2) = ~ d,(rl)P,(r2)+2 ~ ~ &i(rl)Slj(r2)/p(r2), (14) 
i = 1  i = 1  ]=1  

where (i #]) 

Sij(r) = f*i (r)fj(r), (15) 

di(r) = Su(r) = If,(r)l 2, (16) 

and 

Pi(r) = 2 di(r)/ p(r). (17) 

The quantity P~(r) specifies the probability that an electron at position r is in 
orbital fi [9]. The sum of these probabilities is equal to unity, 

P,(r) = 1, (18) 
i = 1  

for all values of r. The quantity &i(r) is an overlap integrand, and integrates to 
zero for i # j (for orthonormal orbitals). 
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In the case of an open shell Slater determinant, the Fermi hole for the a electrons 
differs from that of the/3 electrons. In this case the a spin Fermi hole may be 
defined as 

As (rl ; r2) = p~ (rl)  -- 2 p ~  (rl,  r2 ) /p .  (r2), (19) 

and an analogous expression may be defined for the/3 spin Fermi hole. In terms 
of individual orbitals, this is given by 

A=(rl; r2)= ~, d,(rl)Pi(r2)+ ~ ~ Si,(r~)Sq(r2)/p~(r2). (20) 
i=1 i=11=1 

(i#j) 

In the case of a closed shell electronic configuration, this is identical to the Fermi 
hole defined in Eq. (14). 

The Fermi hole defined by Eqs. (14) and (20) is regarded as a function of rl 
which depends parametrically on the position ra of a "probe electron". This 
function of rl describes the loss of density from the total electronic density 
distribution (for electrons of like spin) associated with the presence of the probe 
electron at position r2. 

The Fermi hole defined by Eq. (9) may also be written as 

A(rl ;  r2) = • Y. Ai i(r2)fi ( r l ) f~  (rl) (21) 
i i 

where Aq(r2) is an element of a matrix A(r2) which depends on the position of 
the probe electron. This may be expressed in the diagonal form 

A(rl;  r2) = • Mk(r2)]gk(rl; r2)l 2 (22) 
k 

where the Mk (r2) a re  the eigenvalues of ~(r2)  and gk (rl; r2) is a Fermi hole natural 
orbital, or Fermi orbital. The eigenvalues sum to unity 

Y~ Mk(r2) = 1, (23) 
k 

following the sign convention adopted above. 

In the case of a closed shell SCF wavefunction, the elements of ~(rz) are given 
by 

Aq (r2) = 2 Sq (r2)/p (r2). (24) 

Consequently, the eigenvalues of ~ are all equal to zero, except for one which 
is equal to unity. In this case, the Fermi hole is determined by a single Fermi 
orbital 

A(rl  ; r2) = Ig(r, ;r2)[ 2, (25) 
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where 

g(rl; r2) = ~ fi(rl)[f~ (r2)/f(r2)] 
i = 1  

and 

(26) 

f(r) = 4p (r)/2. (27) 

The Fermi orbital g(rl; re) is a specific linear combination of the occupied orbitals 
fi(rl). As such it may be positive or negative, and it may possess nodes. Therefore, 
the Fermi hole for a single Slater determinant is capable of possessing nodes. 
This is in contrast to the Fermi hole for a correlated wavefunction (Eqs. (21) 
and (22)) which generally cannot possess nodal surfaces. 
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Fig. 1. The Fermi hole in the plane of the nuclei of a water molecule. The oxygen nucleus is located 
at the origin and the protons (+)  are located at x = +1.515263 Bohr and y = 1.049898 Bohr. The 
position of the probe electron (X = 0.18 Bohr, y = 0.20 Bohr) is indicated by a solid circle. The 
range of densities represented by each symbol is given by 0 (blank) 0.025 (.) 0.05 (:) 0.10 ( # )  0.15 
(-) 
0.20 ( = )  0.30 (&) 0.40 (;) 0.50 (/) 1.00 (+)  2.00 (*) higher; in units of electrqns per cubic Bohr. 
For comparison, the electronic density of a hydrogen atom at the Bohr radius is 1/~'e 2= 0.043 
electrons per cubic Bohr 
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4. The Fermi Hole in the Water Molecule 

The shape of the Fermi hole in the water molecule for each of six positions of 
the probe electron is shown in Figs. 1 to 6. These contour maps are based on 
a double zeta SCF wavefunction for the ground electronic state of the water 
molecule [43]. Figs. 1 through 5 show the shape of the Fermi hole in the plane 
of the nuclei. Fig. 6 is based on the plane perpendicular to the plane of the 
nuclei which contains the Cz rotation axis. A collection of approximately 100 
similar contour maps based on an STO-3G SCF wavefunction [44] has been 
used to produce an animated movie of the Fermi hole in a water molecule [45]. 

Figure 1 shows the shape of the Fermi hole when the probe electron is relatively 
close to the oxygen nucleus. This Fermi hole is nearly entirely contained within 
the oxygen atom inner (K) shell. Any position of the probe electron closer to 
the nucleus than this is expected to yield a Fermi hole which is nearly identical 
to this. That is, the shape of the Fermi hole is relatively insensitive to the position 
of the probe electron when it is within roughly 0.3 Bohr of the oxygen nucleus. 
This is consistent with the observation of Sperber who noted that the Fermi hole 
of the beryllium atom tends to be confined to the K shell of this atom when the 
probe electron is within the region dominated by the K shell orbital [11]. 
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Fig. 2. Same as Fig. I, except tha the probe electron is located at (x = 0.27 Bohr, y = 0.30 Bohr) 
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The position of the probe electron in Fig. 2 is only 0.135 Bohr away from the 
position in Fig. 1. As the probe electron moves in this direction (from the position 
in Fig. 1), the Fermi hole rapidly extends into the vicinity of one of the hydrogen 
atoms. In this case, the shape of the Fermi hole is very sensitive to the position 
of the probe electron. 

The rapid changes in the shape of the Fermi hole characterized by Fig. 2 are 
nearly complete by the time the probe electron reaches the position in Fig. 3. 
This position is roughly 0.40 Bohr from the position in Fig. 2 and 0.81 Bohr from 
the oxygen nucleus. Further changes in the position of the probe electron beyond 
this point, as demonstrated in Figs. 4 and 5, yield relatively small changes in 
the shape of the Fermi hole. As in Fig. 1, the shape of the Fermi hole shown 
in Figs. 3, 4 and 5 is relatively insensitive to the position of the probe electron. 
Comparison to Fig. 7 shows that the relatively stable shape which appears in 
Figs. 3, 4, and 5 bears a strong resemblance to the localized molecular orbital 
(determined by Boys' criterion) associated with the O- -H bond. 

Figure 6 shows the shape of the Fermi hole for a probe electron located in the 
region normally associated with the oxygen lone pairs. Comparison with Fig. 8 
shows that this Fermi hole is very similar to the corresponding localized molecular 
orbital determined by the Boys' criterion. As in Figs. 3, 4, and 5, the Fermi hole 

- 2  -1 

2-  

. . . : : : : : : : : : : : ~ ; ~ ; ~ ; ~ ; ; ; ; : : : : ' : .  
========================================== 

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : :  

: : : : : : : : # # # # # # ~ # # # # # # # # #  # # I :  
t : ~ # # # # # # # ~ # ~ #  # # # # # # # - - -  # # # :  

# # # 0 # # # # # # # # # # 8 # # # # # ~ :  iiiiiii  " #  . . . . . . . .  # # # # # ' # #  . . . . . .  # -  
o . o : : : : # # # - , - = = : : = : = =  . . . . . . . . . . .  : 

" ; : ~ # # : : ~ #  1 . . . . . . . . . . . . . . . . . .  " # # # # # # # : : :  : ~ & & & & & ~ = = = = =  . . . . .  # # # # # # : : : : :  
. ~ 1 7 6  . . . . .  # # # # # # = : : : = =  

=~&~ ; ~ & & & : : : : - - - # # # # : : : : : : : ~  

: : i : : : :  

~  

o . : : : # - = =  ~ 1 7 6  
. ~ 1 7 6  

o , , , ,  . . . .  , i  
~o . . . .  , ~  

- 1  

- ~ & K g & & g & g = = = = - - # # # # : : : : : : : o o .  
: - * = C ~ & & K = = = = - - - # # # : : : : : : :  . . . . .  

I 
: # #  . . . . . .  ~ # #  1 : : : :  
�9 : : # # m e # # # # #  : : : :  

. . . . . . . . . .  , . . .  
. , , , . , , , o  

Fig. 3. Same as Fig. 1, except that the probe electron is located at (x = 0.54 Bohr, y = 0.60 Bohr) 
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Fig.  4.  S a m e  as Fig.  1, excep t  t h a t  the  p r o b e  e l e c t r o n  is l o c a t e d  a t  (x = 1 .38 B o h r ,  y = 1 .425  B o h r )  

shown in Fig. 6 includes the nodal surface found in the corresponding localized 
molecular orbital. 

The shape of the Fermi hole shown in Fig. 6 is insensitive to radial displacement 
of the probe electron away from the oxygen atom. As the probe electron moves 
radially towards the oxygen atom, the shape of the Fermi hole is expected to 
be relatively stable until the probe electron is less than roughly 0.8 Bohr from 
the oxygen nucleus. When the probe electron is between 0.8 and 0.3 Bohr, the 
Fermi hole is expected to change rapidly from the shape shown in Fig. 6 to that 
of Fig. 1. When the probe electron is less than 0.3 Bohr, the shape of the Fermi 
hole will again be relatively stable. 

The response of the Fermi hole to angular motion of the probe electron in Fig. 
6 differs greatly from that described above for radial motion. For angular motion 
of the probe electron between the position indicated in Fig. 6, and the symmetri- 
cally related position below the molecular plane, the Fermi hole follows the 
probe electron smoothly and synchronously. There is almost no change in the 
shape of the Fermi hole, but this nearly rigid shape rotates about the oxygen 
nucleus following the probe almost perfectly as the angular position of the probe 
electron changes. As such, the shape of the Fermi hole can be changed from 
one of the lone pairs to the other lone pair through a nearly rigid rotation which 
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Fig. 5. Same as Fig. 1, except that the probe electron is located at (x = 1.40 Bohr, y = 0.30) 

recognizes  no boundaries separating the lone pairs. This contrasts with the bond 
to core or lone pair to core transformations which display regions of relative 
stability separated by regions in which the shape of the Fermi hole changes 
rapidly. Likewise,  the bond to bond transformation cannot  proceed by a rigid 
rotation of an O - - H  bond because the protons are fixed in space and the shapes 
of the O - - H  bonds are determined by the positions of the protons.  

5. Local ized Orbitals and the Fermi Ho le  

The Fermi hole in the water  molecule exhibits three distinctive types of behavior:  

1. The Fermi hole may follow the motion of the probe  electron rigidly. 
2. The Fermi hole may be insensitive to the position of the probe  electron. 
3. The Fermi  hole may change rapidly in response to small changes in the 

position of the probe  electron. 

The  first type of behavior  is characteristic of a uniform density free electron gas. 
Such a system is translationally invariant and the size and shape of the Fermi 
hole cannot depend on the position of the probe  electron. The  Fermi hole is 
locked onto the probe  electron and follows it like a rigid object. Any other 
system which is translationally or rotationally invariant must exhibit similar 
characteristics. For example,  the size and shape of the Fermi hole in a closed 
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Fig. 6. Same as Fig. 1, except that the probe electron is located at (x = 0.0, y = -1.0, z = 1.0) and 
the density is plotted for the yz plane (perpendicular to molecular plane and including the C2 axis) 

shell atom is invariant with respect to the angular co-ordinates of the probe 
electron. Likewise, the shape of the Fermi hole in a linear molecule is invariant 
to rotation of the probe electron about the molecular axis. The Fermi hole in a 
highly conjugated molecule should exhibit this type of behavior to the extent 
that the (pi) electrons may be described by a free electron gas. This type of 
behavior is characteristic of delocalized electrons. 

The second and third types of behavior may be explained with the help of an 
isolated orbital model. Consider a partition of the electronic position space into 
n distinct non-overlapping regions D1, D2 . . . . .  f~n. These regions may be similar 
to the loges advocated by Daudel  and co-workers [17-19].  Al low each region 
Di to contain a single normalized spatial function f~(r) which is zero at all points 
not contained in Di. In this situation, the quantities Sij(r) in Eqs. (14) and (20) 
vanish everywhere for all i r In addition, the probabilities Pi(r) vanish for all 
points not in Di, and equal unity for all points in D~. Consequently, the Fermi 
hole is given by 

A(ra; r2) = di(rl), for rz in ~i. (28) 

In this model, the shape of the Fermi hole is independent of the position of the 
probe electron as long as the probe electron remains within a single region. As 
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Fig. 7. Localized molecular orbital determined by Boys' criterion. The O--H bond in the plane of 
the molecule. The contours are defined in Fig. 1 

soon as the probe  electron crosses a boundary  f rom one region into another,  
the shape of the Fermi hole changes discontinuously f rom one shape to that 
required by the new region. 

The situation described above may be realized by a collection of widely separated 
helium atoms (or hydrogen molecules). For  example,  consider a set of eight 
helium atoms located at the corners of a very large cube. The canonical SCF 
molecular  orbitals of this system would have the symmetries of irreducible 
representat ions of the Oh point group. The localized SCF molecular orbitals 
would consist of an atomic SCF orbital for a helium a tom at each corner of the 
cube. The  Fermi hole, however,  is invariant to the choice of localized or canonical 

or any of their properties.  No mat ter  what choice of orbitals is used to describe 
the Fermi hole, the Fermi hole will always describe the localized orbitals. 

In the case of a molecular  SCF wavefunction, it is not generally possible to 
isolate the individual orbitals into isolated regions. Each orbital, even when 
localized, penetrates  the regions dominated by other orbitals. Consequently,  the 
simple isolated orbital model  discussed above cannot describe the behavior  of 
the Fermi hole in a typical molecule.  In most  molecules, however,  the features 
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Fig. 8. Localized molecular orbital determined by Boys' criterion. One of the oxygen lone pair 
orbitals, plotted in the plane specified in Fig. 6. The contours are defined in Fig. 1 

of the isolated orbital model are not destroyed entirely, but survive in a modified 
form. Thus, instead of sharply defined regions within which the Fermi hole is 
independent of the position of the probe electron, there are regions within which 
the Fermi hole is weakly dependent on the position of the probe electron. Instead 
of sharply defined boundaries at which the Fermi hole changes discontinuously, 
there are fuzzy regions within which the shape of the Fermi hole changes rapidly. 
Instead of following the probe electron smoothly, the Fermi hole may lag behind 
and then jump ahead as the probe electron passes through a boundary region. 

The regions of stability are the regions where a single orbital dominates the 
charge density. Eq. (28) is a good approximation in such regions, and the shape 
of the Fermi hole for a probe electron in one of these regions is largely determined 
by the orbital which dominates this region. The condition that a single orbital 
dominates any region of space is satisfied best for localized molecular orbitals. 
It is not necessary to use localized orbitals to evaluate the Fermi hole because 
the Fermi hole is invariant to unitary transformations of the occupied orbita!s. 
Consequently, if there exists any orbital which dominates a certain region of 
space, and which is a member of a set of orbitals related to the canonical SCF 
orbitals by a unitary transformation, then the Fermi hole will resemble that 
orbital for any position of the probe electron within that region. 
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In the case of the water molecule, the region within roughly 0.3 Bohr of the 
oxygen nucleus is dominated by the oxygen inner shell orbital. Likewise, the 
region near each of the protons is dominated by a single O--H bond localized 
orbital. Between each of these regions there is a boundary region within which 
the size and shape of the Fermi hole changes rapidly. 

The side of the water molecule opposite to the protons is dominated by two 
lone pair localized orbitals, each of which is well approximated by an sp 3 hybrid 
atomic orbital. This side of the oxygen atom resembles half of a neon atom. As 
such, the charge distribution in this region is almost rotationally invariant. 
Consequently, it is possible for the Fermi hole to follow the probe electron from 
one lone pair to the other with no intervening boundaries being crossed. Thus, 
we have a set of four electrons delocalized in the region of the two lone pair 
orbitals. 

Although the lone pair region does not exhibit stability with respect to angular 
motion of the probe electron, this region, as well as the O--H bond regions 
display stability with respect to radial motion of the probe electron as it moves 
away from the oxygen nucleus and into the fringe areas of the electronic 
distribution. This is caused by the fact that the magnitude of the Fermi hole is 
limited to less than or equal to half of the total density at any point, and the 
integrated magnitude of the Fermi hole must always equal unity. As such, the 
Fermi hole cannot follow the probe electron into the fringe areas of the electronic 
distribution. The necessary contributions to the integrated Fermi hole do not 
exist beyond a certain point. Once the Fermi hole has consumed most of the 
available electron density in any fringe area, it is essentially stuck, and further 
radial motion of the probe electron does not matter. 

The stability of the Fermi hole for certain regions of the position of the probe 
electron can also be explained through Eqs. 25 to 27. Allow each of the SCF 
orbitals fi (r) to be determined by a linear combination of functions X. (r), 

f~(r) = E C~x~(r). (29) 

The functions x~(r) may be either conventional Slater type or Gaussian basis 
functions, or they may be idealized atomic orbitals. Consider the situation where 
region f ~  is dominated by the function ,g~ (r). That is, the magnitude of X~.(r) is 
much greater than that of all of the other basis functions for any point in the 
region f~,. In this case, we have 

f,(r) ~ G,~x,, (r), (30) 
and 

f(r) -~ CuX. (r), (3 i) 

for r in ~ ,  and 

g(rl; r2)~g,(rl)=-- ~ Ciufi(ri)/C,, (32) 
i = l  
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for  r2 in 1~,, w h e r e  

= Ic l 2 ( 3 3 )  
i = 1  

There fo re ,  if any  a tomic  o rb i t a l  d o m i n a t e s  any reg ion  of  space ,  the  F e r m i  o rb i t a l  
g, and  thus the  F e r m i  hole ,  i s  i n d e p e n d e n t  of the  pos i t ion  of the  p r o b e  e lec t ron  
as long as the  p r o b e  e lec t ron  is loca ted  within this region.  

B a s e d  on the  cons ide ra t ions  p r e s e n t e d  above ,  the  F e r m i  o rb i t a l  g ,  should  be  a 
good  a p p r o x i m a t i o n  to one  of the  loca l ized  m o l e c u l a r  o rb i ta l s  for  this molecu le .  
This  expec t a t i on  is conf i rmed  in Tab les  1 and  2. Tab le  1 shows the  d o u b l e  ze ta  
o rb i ta l s  used  in this work .  The  F e r m i  orb i ta l s  d e t e r m i n e d  by  basis  funct ions  # 1 
and  # 5 are  shown in Tab le  2. The  c o r r e s p o n d i n g  loca l ized  m o l e c u l a r  o rb i ta l s  
d e t e r m i n e d  by  Boys '  c r i t e r ion  are  also shown in T a b l e  2 for  compar i son .  The  
s imi la r i ty  b e t w e e n  the  F e r m i  orb i ta l s  and  Boys '  loca l ized  m o l e c u l a r  o rb i ta l s  is 
ve ry  sa t i s fac tory  cons ider ing  the  a p p r o x i m a t i o n s  invo lved  in Eq.  (32). 

O n e  c o n s e q u e n c e  of Eq.  (32) is tha t  the  F e r m i  ho le  d e t e r m i n e d  by  a m in ima l  
basis  set  a p p e a r s  much  m o r e  loca l izab le  th~in tha t  d e t e r m i n e d  by  an e x t e n d e d  
basis  set. I t  is much  eas ier  for  a single basis  func t ion  to d o m i n a t e  a r eg ion  of 
space  if it  is not  r e q u i r e d  to share  any th ing  with any s imi lar  basis  funct ion.  Thus  
the  t rans i t ion  b e t w e e n  core  and b o n d  orb i ta l s  occurs  m o r e  ab rup t ly  for  the  
S T O - 3 G  wavefunc t ions  [45] than  it does  with the  doub le  ze ta  wavefunc t ion .  

E q u a t i o n  (32) does  no t  p rov ide  anyth ing  for  lone  pa i r  o rb i ta l s  because  the  lone  
pa i r  r eg ion  is no t  d o m i n a t e d  by  a single a tomic  orb i ta l .  These  orb i ta l s  can be  
r e p r e s e n t e d  by using Eq.  (26), and  select ing two pos i t ions  of the  p r o b e  e l ec t ron  
nea r  w h e r e  the  lone  pai rs  a re  expec t ed  to be  found.  

Table 1. Double zeta self-consistent field molecular orbitals for the water molecule. The geometry 
is described in Fig. 1. The double zeta basis set is taken from the work of Dunning (Ref. [43]). The 
SCF energy for this wavefunction is -76.00984 Hartrees 

BF # Atom A-ORB Mo # 1 MO # 2 MO # 3 MO # 4 MO # 5 

1 HYDRGN-1 HYD-1S-1 0.000040 0.132500 0.253144 0.133633 0.0 
2 HYDRGN-1 HYD-1S-2 -0.000183 0.007729 0.128386 0.061411 0.0 
3 HYDRGN-2 HYD-1S-1 0.000040 0.132500 -0.253144 0.133633 0.0 
4 HYDRGN-2 HYD-1S-2 -0.000183 0.007729 -0.128386 0.061411 0.0 
5 OXYGEN OX-1S-1 0.581012 -0.130941 0.0 0.044407 0.0 
6 OXYGEN OX-1S-2 0.461238 -0.181527 0.0 0.061989 0.0 
7 OXYGEN OX-2S-1 -0.000166 0.511096 0.0 -0.188614 0.0 
8 OXYGEN OX-2S-2 0.001877 0.460447 0.0 -0.249762 0.0 
9 OXYGEN OX-2P-1-X 0.0 0.0 0.0 0.0 0.727677 

10 OXYGEN OX-2P-2-X 0.0 0.0 0.0 0.0 0.410294 
11 OXYGEN OX-2P-1-Y 0.0 0.0 0.569277 0.0 0.0 
12 OXYGEN OX-2P-2-Y 0.0 0.0 0.178846 0.0 0.0 
13 OXYGEN OX-2P-1-Z 0.001591 0.117049 0.0 0.633273 0.0 
14 OXYGEN OX-2P-2-Z -0.000453 0.032478 0.0 0.338846 0.0 
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Table 2. Comparison of localized molecular orbitals determined by Eq. (32) and the corresponding 
molecular orbitals determined by Boys' criterion. The oxygen inner shell orbital and O--H bond 
orbital determined by Eq. (32) (this work) are based on basis functions 5 (OX-1S-1) and 1 
(HYD-1S-1/HYDRGN-1) respectively. The SCF molecular orbitals used to determine these orbitals 
are shown in Table 1 

Oxygen inner shell O--H bond 
BF # Atom A-ORB This work Boys LMO This work Boys LMO 

1 HYDRGN-1 HYD-1S-1 -0.019075 -0.004714 0.315430 0.309310 
2 HYDRGN-1 HYD-1S-2 0.002687 0.001471 0.132298 0.119442 
3 HYDRGN-2 HYD-1S-1 -0.019075 -0.004714 -0.090885 -0.048690 
4 HYDRGN-2 HYD-1S-2 0.002687 0.001471 -0.073771 -0.062123 
5 OXYGEN OX-1S~I 0.597237 0.590170 -0.036117 -0.042983 
6 OXYGEN OX-1S-2 0.493117 0.475072 -0.049933 -0.069177 
7 OXYGEN OX-2S-1 -0.126240 -0.043855 0.134786 0.226038 
8 OXYGEN OX-2S-2 -0.117695 -0.040364 0.087605 0.172330 
9 OXYGEN OX-2P-1-X 0.0 0.0 0.0 0.0 

10 OXYGEN OX-2P-2-X 0.0 0.0 0.0 0.0 
11 OXYGEN OX-2P-1-Y 0.0 0.0 0.456865 0.402540 
12 OXYGEN OX-2P-2-Y 0.0 0.0 0.143530 0.126463 
13 OXYGEN OX-2P-1-Z 0.022972 0.015941 0.317456 0.317566 
14 OXYGEN OX-2P-2-Z 0.017633 0.009406 0.157196 0.152177 

6. Conclusions 

T h e  F e r m i  hole ,  loge  theory ,  and local ized molecu la r  orbi tals  are all c losely 

re la ted .  If the re  exists any orbi ta l  which domina te s  a cer ta in  reg ion  of space, 

then  the  shape of the  F e r m i  hole  is similar  to that  orbi ta l  for any pos i t ion  of 

the  p r o b e  e l ec t ron  within  the  d o m i n a t e d  region.  If a single a tomic  orbi ta l  

domina t e s  any reg ion  of a molecu le ,  then  the local ized orbi ta l  which domina te s  

that  r eg ion  is d e t e r m i n e d  by a s imple  l inear  combina t i on  of the  S C F  molecu la r  

orbitals .  
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